基于朴素贝叶斯决策理论的分类方法
朴素贝叶斯是贝叶斯决策理论的一部分,所以学习朴素贝叶斯之前有必要快速了解一下贝叶斯决策理论。
假设我们现在有一个数据集,它由两类数据组成,数据分布如图:
我们用p1(x,y)表示点(x,y)属于类别1的概率,p2(x,y)表示属于类别2的概率,那么对于一个新的数据点(x,y)我们可以用下面的规则来判断它的类别
- 如果p1(x,y)>p2(x,y),那么类别为1
- 如果p2(x,y)>p1(x,y),那么类别为2
也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有 最高概率的决策。
利用朴素贝叶斯进行文档分类
机器学习的一个重要应用就是文档的自动分类。在文档分类中,整个文档(如一封电子邮件)是实例,而电子邮件中的某些元素则构成特征。虽然电子邮件是一种会不断增加的文本,但我们同样也可以对新闻报道、用户留言、政府公文等其他任意类型的文本进行分类。我们可以观察文档中出现的词,并把每个词的出现或者不出现作为一个特征,这样得到的特征数目就会跟词汇表中的词目一样多。朴素贝叶斯是上节介绍的贝叶斯分类器的一个扩展,是用于文档分类的常用算法。
朴素贝叶斯的一般过程
(1) 收 集 数 据 :可以使用任何方法。
(2)准备数据:需要数值型或者布尔型数据。
(3)分析数据:有大量特征时,绘制特征作用不大,此时使用直方图效果更好。
(4)训练算法:计算不同的独立特征的条件概率。
(5)测试算法:计算错误率。
(6)使用算法:一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使_用朴素贝叶斯命类器,不一定非要是文本。
朴素贝叶斯假设特征之间相互独立,并且特征同等重要,
使用python进行文本分类
准备数据,从文本中构建词向量
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
def createVocabList(dataSet):
vocabSet = set([]) #create empty set
for document in dataSet:
vocabSet = vocabSet | set(document) #union of the two sets
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else: print "the word: %s is not in my Vocabulary!" % word
return returnVec
该函数使用词汇表或者想要检查的所有单词作为输人,然后为其中每一个单词构建一个特 征。一旦给定一篇文档(斑点犬网站上的一条留言),该文档就会被转换为词向量
训练算法:从词向量计算概率
该函数的伪代码如下:
计算每个类别中的文档数目
对每篇训练文档:
对每个类别: 如果词条出现文档中―增加该词条的计数值
增加所有词条的计数值
对每个类别:
对每个词条:
将该词条的数目除以总词条数目得到条件概率
返回每个类别的条件概率
def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = ones(numWords); p1Num = ones(numWords) #change to ones()
p0Denom = 2.0; p1Denom = 2.0 #change to 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom) #change to log()
p0Vect = log(p0Num/p0Denom) #change to log()
return p0Vect,p1Vect,pAbusive
最后,函数 会返回两个向量和一个概率。
测试算法
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1) #element-wise mult
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
准备数据:文档词袋模型
目前为止,我们将每个词的出现与否作为一个特征,这可以被描述为词集模型,如果一个词在文档中出现不止一次,这可能意味着包含该词是否出现在文档中所不能表 达的某种信息,这种方法被称为词袋模型,在词袋中,每个单词可以出现 多次,而在词集中,每个词只能出现一次。为适应词袋模型,需要对函数setOfWord2Vec()
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
使用朴素贝叶斯过滤邮件
(1)收集数据:提供文本文件。
(2)准备数据:将文本文件解析成词条向量。
(3)分析数据:检查词条确保解析的正确性。
(4)训练算法:使用我们之前建立的trainNBO()函数。
(5)测试算法:使用clasSifyNB(),并且构建一个新的测试函数来计算文档集的错误率。
(6)使用算法:构建一个完整的程序对一组文档进行分类,将错分的文档输出到屏幕上。
def textParse(bigString): #input is big string, #output is word list
import re
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
def spamTest():
docList=[]; classList = []; fullText =[]
for i in range(1,26):
wordList = textParse(open('email/spam/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#create vocabulary
trainingSet = range(50); testSet=[] #create test set
for i in range(10):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses = []
for docIndex in trainingSet:#train the classifier (get probs) trainNB0
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
for docIndex in testSet: #classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
errorCount += 1
print "classification error",docList[docIndex]
print 'the error rate is: ',float(errorCount)/len(testSet)
#return vocabList,fullText
函数会输出在10封随机选择的电子邮件上的分类错误率。既然这些电子邮件是随机选择的,所以每次的输出结果可能有些差别。如果发现错误的话,函数会输出错分文 档的词表,这样就可以了解到底是哪篇文档发生了错误。如果想要更好地估计错误率,那么 就应该将上述过程重复多次,比如说10次 ,然后求平均值。我这么做了一下,获得的平均错 误率为6%。